Tag Archive for Data

The Bolund Experiment, Part I: Flow Over a Steep, Three-Dimensional Hill

We present an analysis of data from a measurement campaign performed at the Bolund peninsula in Denmark in the winter of 2007–2008. Bolund is a small isolated hill exhibiting a significantly steep escarpment in the main wind direction. The physical shape of Bolund represents, in a scaled-down form, a typical wind turbine site in complex terrain. Because of its small size the effect of atmospheric stratification can be neglected, which makes the Bolund experiment ideal for the validation of neutral flow models and hence model scenarios most relevant to wind energy. We have carefully investigated the upstream conditions. With a 7-km fetch over water, the incoming flow is characterized as flow over flat terrain with a local roughness height based on the surface momentum flux. The nearly perfect upstream conditions are important in forming a meaningful quantitative description of the flow over the Bolund hill. Depending on the wind direction, we find a maximum speed-up of 30% at the hill top accompanied by a maximum 300% enhancement of turbulence intensity. A closer inspection reveals transient behaviour with recirculation zones. From the wind energy context, this implies that the best site for erecting a turbine based on resource constraints unfortunately also imposes a penalty of high dynamic loads. On the lee side of Bolund, recirculation occurs with the turbulence intensity remaining significantly enhanced even at one hill length downstream. Its transient behaviour and many recirculation zones place Bolund in a category in which the linear flow theory is not applicable.

The Bolund Experiment, Part II: Blind Comparison of Microscale Flow Models

Bolund measurements were used for a blind comparison of microscale flow models. Fifty-seven models ranging from numerical to physical were used, including large-eddy simulation (LES) models, Reynolds-averaged Navier–Stokes (RANS) models, and linearized models, in addition to wind-tunnel and water-channel experiments. Many assumptions of linearized models were violated when simulating the flow around Bolund. As expected, these models showed large errors. Expectations were higher for LES models. However, of the submitted LES results, all had difficulties in applying the specified boundary conditions and all had large speed-up errors. In contrast, the physical models both managed to apply undisturbed ‘free wind’ boundary conditions and achieve good speed-up results. The most successful models were RANS with two-equation closures. These models gave the lowest errors with respect to speed-up and turbulent kinetic energy (TKE) prediction.

The Bolund Project

The Bolund experiment is a field campaign that provides a new dataset for validating models of flow in complex terrain. It has been the basis for a unique blind comparison of flow models. An increasing number of wind farms are being installed in complex terrain where wind resources are good, but the wind shear and turbulence can exceed the design basis. CFD is becoming a standard tool to quantify such wind conditions and determine the optimum positions of the wind turbines. However, these flow models have usually only been validated against wind tunnel experiments with simple terrain forms.